Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 20(14): 3191-3202, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38529557

RESUMO

Different polymer chains in a solution or melt have different conformations with corresponding entropy at each moment, which would be confined after crystallization. Equilibrium concept-based conformation or conformational entropy depends on chain dynamics, which is related to the effect of energy on conformational changes in polymer chains. Herein, an isotactic polybutene-1 (iPB-1) crystal was crystallized from solution by adding a precipitant at various temperatures. The solution-crystallized iPB-1 crystal was heated to 100 °C to obtain form II at different heat rates and the transition of form II was characterized. It was found that the form II to form I transition was not only related to the precipitation temperature but also to the heating rate of the solution-crystallized iPB-1. Thus, both precipitation temperature and heating rate determine the formation temperature of form II, i.e., form II that crystallized at lower temperature would transform faster. The results indicate that the conformation or conformational entropy of the amorphous region in iPB-1 is important to understand crystal transition.

2.
Front Immunol ; 15: 1335602, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426108

RESUMO

Infection by an emerging bacterial pathogen Rahnella aquatilis caused enteritis and septicemia in fish. However, the molecular pathogenesis of enteritis induced by R. aquatilis infection and its interacting mechanism of the intestinal microflora associated with microRNA (miRNA) immune regulation in crucian carp Carassius auratus are still unclear. In this study, C. auratus intraperitoneally injected with R. aquatilis KCL-5 was used as an experimental animal model, and the intestinal pathological changes, microflora, and differentially expressed miRNAs (DEMs) were investigated by multi-omics analysis. The significant changes in histopathological features, apoptotic cells, and enzyme activities (e.g., lysozyme (LYS), alkaline phosphatase (AKP), alanine aminotransferase (ALT), aspartate transaminase (AST), and glutathione peroxidase (GSH-Px)) in the intestine were examined after infection. Diversity and composition analysis of the intestinal microflora clearly demonstrated four dominant bacteria: Proteobacteria, Fusobacteria, Bacteroidetes, and Firmicutes. A total of 87 DEMs were significantly screened, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the potential target genes were mainly involved in the regulation of lipid, glutathione, cytosine, and purine metabolism, which participated in the local immune response through the intestinal immune network for IgA production, lysosome, and Toll-like receptor (TLR) pathways. Moreover, the expression levels of 11 target genes (e.g., TLR3, MyD88, NF-κB, TGF-ß, TNF-α, MHC II, IL-22, LysC, F2, F5, and C3) related to inflammation and immunity were verified by qRT-PCR detection. The correlation analysis indicated that the abundance of intestinal Firmicutes and Proteobacteria was significantly associated with the high local expression of miR-203/NF-κB, miR-129/TNF-α, and miR-205/TGF-ß. These findings will help to elucidate the molecular regulation mechanism of the intestinal microflora, inflammation, and immune response-mediated miRNA-target gene axis in cyprinid fish.


Assuntos
Carpas , Enterite , Microbioma Gastrointestinal , MicroRNAs , Rahnella , Animais , Carpa Dourada/genética , Carpas/genética , Rahnella/genética , NF-kappa B , Multiômica , Fator de Necrose Tumoral alfa , Inflamação , Fator de Crescimento Transformador beta , MicroRNAs/genética
3.
Integr Zool ; 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37987100

RESUMO

Artificial light at night has been considered an emerging threat to global biodiversity. However, the impacts of artificial light on foraging behavior in most wild animals remain largely unclear. Here, we aimed to assess whether artificial light affects foraging behavior in Asian parti-colored bats (Vespertilio sinensis). We manipulated the spectra of light-emitting diode (LED) lighting in a laboratory. Using video and audio recording, we monitored foraging onset, total foraging time, food consumption, freezing behavior (temporary cessation of body movement), and echolocation vocalizations in triads of bats under each lighting condition. Analyses showed that the foraging activities of experimental bats were reduced under LED light. Green, yellow, and red light had greater negative effects on bats' foraging onset, total foraging time, and food consumption than white and blue light. LED light of different spectra induced increased freezing time and echolocation vocalizations in captive bats, except for the white light. The peak wavelength of light emission correlated positively with freezing time, estimated echolocation pulse rate (the number of echolocation pulses per minute), and foraging onset, but negatively with total foraging time and food consumption. These results demonstrate that artificial light disturbs foraging behavior in Asian parti-colored bats. Our findings have implications for understanding the influencing mechanism of light pollution on bat foraging.

4.
Sci Rep ; 13(1): 5024, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977685

RESUMO

With the continuous development of information technology and the running speed of computers, the development of informatization has led to the generation of increasingly more medical data. Solving unmet needs such as employing the constantly developing artificial intelligence technology to medical data and providing support for the medical industry is a hot research topic. Cytomegalovirus (CMV) is a kind of virus that exists widely in nature with strict species specificity, and the infection rate among Chinese adults is more than 95%. Therefore, the detection of CMV is of great importance since the vast majority of infected patients are in a state of invisible infection after the infection, except for a few patients with clinical symptoms. In this study, we present a new method to detect CMV infection status by analyzing high-throughput sequencing results of T cell receptor beta chains (TCRß). Based on the high-throughput sequencing data of 640 subjects from cohort 1, Fisher's exact test was performed to evaluate the relationship between TCRß sequences and CMV status. Furthermore, the number of subjects with these correlated sequences to different degrees in cohort 1 and cohort 2 were measured to build binary classifier models to identify whether the subject was CMV positive or negative. We select four binary classification algorithms: logistic regression (LR), support vector machine (SVM), random forest (RF), and linear discriminant analysis (LDA) for side-by-side comparison. According to the performance of different algorithms corresponding to different thresholds, four optimal binary classification algorithm models are obtained. The logistic regression algorithm performs best when Fisher's exact test threshold is 10-5, and the sensitivity and specificity are 87.5% and 96.88%, respectively. The RF algorithm performs better at the threshold of 10-5, with a sensitivity of 87.5% and a specificity of 90.63%. The SVM algorithm also achieves high accuracy at the threshold value of 10-5, with a sensitivity of 85.42% and specificity of 96.88%. The LDA algorithm achieves high accuracy with 95.83% sensitivity and 90.63% specificity when the threshold value is 10-4. This is probably because the two-dimensional distribution of CMV data samples is linearly separable, and linear division models such as LDA are more effective, while the division effect of nonlinear separable algorithms such as random forest is relatively inaccurate. This new finding may be a potential diagnostic method for CMV and may even be applicable to other viruses, such as the infectious history detection of the new coronavirus.


Assuntos
Inteligência Artificial , Infecções por Citomegalovirus , Adulto , Humanos , Citomegalovirus/genética , Algoritmos , Infecções por Citomegalovirus/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala , Receptores de Antígenos de Linfócitos T
5.
Front Immunol ; 14: 1098455, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36820086

RESUMO

The gill of fish is an important immune organ for pathogen defense, but its microRNA (miRNA) expression and regulatory mechanism remain unclear. In this study, we report on the histopathological and immunohistochemical features of the gills of the crucian carp Carassius auratus challenged with Aeromonas hydrophila. Small RNA libraries of the gills were constructed and sequenced on the Illumina HiSeq 2000 platform. A total of 1,165 differentially expressed miRNAs (DEMs) were identified in gills, of which 539 known and 7 unknown DEMs were significantly screened (p < 0.05). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the potential target genes/proteins were primarily involved in 33 immune-related pathways, in which the inflammatory responses were focused on the Toll-like receptor (TLR), mitogen-activated protein kinase (MAPK), and nuclear factor kappa B (NF-κB) signaling pathways. Moreover, the expression levels of 14 key miRNAs (e.g., miR-10, miR-17, miR-26a, miR-144, miR-145, and miR-146a) and their target genes (e.g., TNFα, TLR4, NF-κB, TAB1, PI3K, and IRAK1) were verified. In addition, the protein levels based on isobaric tags for relative and absolute quantification (iTRAQ) were significantly associated with the results of the quantitative real-time PCR (qRT-PCR) analysis (p < 0.01). miR-17/pre-miR-17 were identified in the regulation expression of the NF-κB target gene, and the phylogenetic tree analysis showed that the pre-miR-17 of C. auratus with the closest similarity to the zebrafish Danio rerio is highly conserved in teleosts. This is the first report of the multi-omics analysis of the miRNAs and proteins in the gills of C. auratus infected with A. hydrophila, thus enriching knowledge on the regulation mechanism of the local immune response in Cyprinidae fish.


Assuntos
Carpa Dourada , MicroRNAs , Animais , Aeromonas hydrophila , Brânquias , Peixe-Zebra/genética , Multiômica , NF-kappa B/genética , Filogenia , Imunidade Inata/genética , MicroRNAs/genética
7.
Cell Rep ; 41(5): 111577, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36323265

RESUMO

Neuropsychiatric symptoms in patients with Alzheimer's disease (AD) are presented as early as the mild cognitive impairment (MCI) stage. However, it remains unclear whether separate neuronal populations encode distinct aspects of the neuropsychiatric symptoms and drive them differently. Here, we report that pyramidal tract (PT) neurons projecting to the thalamus, but not to the pons or medulla, in the medial prefrontal cortex (mPFC) of the mouse model of AD show increased excitability, which is associated with increased irritability and aggressivity. Decreased Kv6.3 in corticothalamic PT neurons contributes to hyper-excitability, which is tightly associated with aggressive behaviors. Overexpression of Kv6.3 not only prevents abnormal excitability of corticothalamic PT neurons in mPFC, but also rescues aggressive behaviors of 3xTg model mice. Our study provides causal evidence for the contribution of corticothalamic PT neurons to irritability in the 3xTg model of AD and reveals circuit mechanisms used by PT neurons to regulate neuropsychiatric symptoms in AD.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Tratos Piramidais , Células Piramidais/fisiologia , Neurônios/fisiologia , Modelos Animais de Doenças , Córtex Pré-Frontal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...